
AD-A122 541 REAL-TME SYNCHRONI?ATION OF INTERPROC;SS
COMMUNICATIONS(U) HARVARD UNIV CAMBRIDOE MA AIKEN
COMPUTATION LAR J H REIF ET AL JUN 82 TR-25-82

UNCLASSIFIED NOOO 14 _80_ C _0674 F/G 9/2 2

EhE-mhhmhmhhhEE
EEmhhhEEEEEmhE

mommomomo ENo

11111l L111 .

1~ 23 2.
136

MCR~~ R m

REAL-TIME SYNCHRONI ZATION

OF

INTERPROCESS COMMUNI CATIONS

by

John H. Reif

Paul G. Spirakis

TR-25-82

Jus i 1 L _ ___

Distribution/ __

Availability Codes
Avail and~/or

Dist Special

or

a

Appiovs-1 for '~

'9

SECURITY 0L AtPI'AtIC)h OP TwitS 1AC. (6hA.. fno#* Fnt-red

REPORT DOCUMENTATIONI PAGE READ i:NSTRUCTO.S

1. REPORT NuMeR '. oVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUJ.ER

4 TITLE (&9 Subite) S. TYPE OF REPORT I PE tOi COVL.:[,

Real-Time Synchronization of Interprocess Technical Report

Communications Is. PERFORMING ORi. REPORT NUMaiER

TR-25-82

1. AUTmOR(s) 1. CONTRACT OR GRANT NUMOR(e)

John Reif N00014-80-C-0674

Paul Spirakis

P. PERFORMtNG ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Harvrd UiverityAREA 0 WORK UNIT NUMBERS
Harvard University - (... I 1. __Cambridge, 1A 02138 ,,_ ') !*

II. CONTROLLING OFFICE NAME AND ADDRESS V i. REPORT DATE

Office of Naval Research June 1982

800 North Quincy Street 13. NUMOER OF PAGES

Arlington, VA 22217 43
14. MONITORING AGENCY NAME 6 AOORESS('II dilerent f,om Comitoltlng Office) Is. SECURiTY CLASS. (of thl reporl)

same as above

IS. OECL ASStIC ATION/OON(RALtNG
SCHEDULE

I6. oIS1RIBUTION lsTATEMENT (of thie keporl)

unlimited

17. D'IST AIDUTION ST AT EMEN T(of the abetrt en tered in. Blazck 20. It different beat, Report)

unlIimi ted

III. SUPPLEMENI'ARY NOTES

It. KEY WORDS (Continue on revers, side At noceieoan' And Identify by block n~um~b")

distributed communication, handshake, synchronization, real time response.

20. ABSTRACT (Continue on reverse olde 11f aceesiny and Identify by block number)

see reverse side.

DD o.AN13 1473 EDITIONOF INOVSSISODSOLETE

S/L A N 002-014-660e
SECURITY CLASSIFICATION OPr THIS PACE (10oon Dae t ntoed.)

. WjqaTy CLASSIFICA1I0h OF To4IS PAG[r~hon Vo.c Entet.d)

SUMMARY

This paper considers a fixed (possibly infinite) set of distributed

asynchronous processes which at various times are willinq to communicate

with each other.

Each process has various ports, each of which is uscd for communicationl

with a distinct iheighbour process. Each process can have at most one port

open at any time and its other ports must be closed. Two processes hndszake

over a time interval A if their respective ports are oput, for mutual

communication during this interval. Note that the handsiake relation is a

matching. Successful corrunicationz requires a handshake of at least 1 step

of each process; during the one step overlap, a message can be transmitted

between processes. The problem is to synchronize processes (via a distributed

scheduler) so that they can successfully handshake at their will, given that

the means of synchronization is some low level construct which does not

guarantee the handshake property if used in an unsophisticated way.

We describe probabilistic distributed algorithms for synchronizing

processes so that they can handshake at will. The means of synchronization

are boolean "flag" variables, each of which can be written by only one

process and read by at most one other process. The use of flag variables

seems as to require the fewest assumptions possible without considering

specific systems.t A process is considered to be tame ovr a time interval L

Continued on next page)

SICU' . V (LA S l -. -TIN Ur IHIS PAIL(Ah9A I .--.

Real-Time Synchronization of Interprocess Communications

20. (Continued)

if its speed varies within curtain arbitrarily fixed nonzero bounds.

We show our synchronization algorithms have reaL tie rcipunse:

If a pair of processes are mutually willing to communicate within a

time interval A of length at least a qiven constant and the pair are tame

oi, A, then they establish commuication within A with hiyh likelihood (for

the worst case behavior of the system and the expected time for establishmcint

of communication is also constant. We feel the term rMaZ t : is merited,

for the actual time needed for establishment of communication is upper

bounded by a constant with overwhelming probability; furthermore, violations

of this property occur with vanishingly low likelihood.

We have very few assumptions: (1) Tameness is required of a process

only during the interval it is willing to communicate (if the tameness

property i:; violated during that interil , then there may be lower probibi lity

of successful communication); at other times any process may dynamically vary

its speed arbitrarily and may even die. (2) The processes may bo willinq to

communicate with a time varyinq set of processes which are only bounded in

number. There are no probability assumptions about system behavior.

Our communication model and synchronization algorithms are quite robust.

They are applied, in (Reif, Spirakis, 82B] and in our Appendix, to solve a

large class of real time resource allocation problems, as well as real time

implementation of the synchronization primitives of Hoare's multiprocessing

language CSP.

REAL-TIME SYNCHRONIZATION OF INTERPROCESS COMMUNICATIONS

by

John H. Reif and Paul G. Spirakis

Harvard University
Aiken Computation Laboratory

Cambridge, MA 02138

June 1982

This work was supported in part by the National Science
Foundation Grant NSF-MCS79-21024 and the Office of Naval
Research Contract N00014-80-C-0674.

SUMMARY

This paper considers a fixed (possibly infinite) set of distributed

asynchronous processes which at various times are willing to communicate

with each other.

Each process has various ports, each of which is used for communication

with a distinct neighbour process. Each process can have at most one port

open at any time and its other ports must be closed. Two processes Paczs'ccrk

over a time interval A if their respective ports are open for mutual

communication during this interval. Note that the handshake relation is a

matching. SuccessfuZ corrunnication requires a handshake of at least 1 step

of each process; during the one step overlap, a message can be transmitted

between processes. The problem is to synchronize processes (via a distributed

scheduler) so that they can successfully handshake at their will, given that

the means of synchronization is some low level construct which does not

guarantee the handshake property if used in an unsophisticated way.

We describe probabilistic distributed algorithms for synchronizing

processes so that they can handshake at will. The means of synchronization

are boolean "flag" variables, each of which can be written by only one

process and read by at most one other process. The use of flag variabies

seems as to require the fewest assumptions possible without considering

specific systems.t A process is considered to be tQc over a time interval

t Note that we do not use any standard high level synchronization
construct such as shared variables with a mutual exclusion mechanism. If we
did, then we would have to assume an implementation of such a mechanism and
there are no real time implementations of such mechanisms (in fact, there is
no bounded time implementation of such mechanisms when processes run on
different processors). We hope in the future that our techniques rather than
other "standard" but inefficient synchronization mechanisms will be utilized
for real time process synchronization.

if its speed varies within certain arbitrarily fixed nonzero bounds.

We show our synchronization algorithms have reaZ time response:

If a pair of processes are mutually willing to communicate within a

time interval A of length at least a given constant and the pair are tame

on A, then they establish communication within A with high likelihood (for

the worst case behavior of the system and the expected time for establishment

of communication is also constant. We feel the term reaZ time is merited,

for the actual time needed for establishment of communication is upper

bounded by a constant with overwhelming probability; furthermore, violations

of this property occur with vanishingly low likelihood.

We have very few assumptions: (1) Tameness is required of a process

only during the interval it is willing to communicate (if the tameness

property is violated during that interval, then there may be lower probability

of successful communication); at other times any process may dynamically vary

its speed arbitrarily and may even die. (2) The processes may be willing to

communicate with a time varying set of processes which are only bounded in

number. There are no probability assumptions about system behavior.

Our communication model and synchronization algorithms are quite robust.

They are applied, in [Reif, Spirakis, 82B] and in our Appendix, to solve a

large class of real time resource allocation problems, as well as real time

implementation o. the synchronization primitives of Hoare's multiprocessing

language CSP.

-1-

1. INTRODUCTION

Recently, [Rabin, 80] [Lehman and Rabin, 81], and [Francez and Rodeh,

80] have proposed probabilistic algorithms for a number of synchronization

problems. This probabiZistic approach (where we make no probabilistic

assumptions about the system behavior, but allow our algorithms to make

probabilistic choices) leads to considerably sinTpZer aZgorithms (perhaps

because of the locality of their decisions) and shorter procfs (perhaps

because the proofs of the corresponding deterministic algorithms had to

consider complex situations which would have very low probability, if

probabilistic choices were taken, whereas, in proofs of probabilistic

algorithms, we need only consider those simple situations which occur with

high probability). The probabilistic approach may also lead to improvement

in the efficiency of synchronization algorithms. An improvement in space

efficiency is seen in [Rabin, 80]. We demonstrate here that a considerable

improvement in time efficiency can be made by probabilistic synchronization.

This paper takes the probabilistic approach to synchronizatio,. of

communication in a network of distributed, asynchronous processes. We are

interested in direct interprocess communication, rather than packet switching

as considered in [Valiant, 80]. Furthermore, we consider handshake corumunica-

tion (as in Hoare's CSP), rather than buffered communication (which is very

easy to implement by message queues).

Previously [Schwarz, 80] proposed a deterministic synchronization

algorithm for implementing CSP [Hoare, 78] on a fixed acyclic distributed

network. Also [Lynch, 80] gave a related algorithm for resource synchroniza-

tion problems. Both algorithms are considerably less time efficient than our

proposed algorithm (for specific comparison of time performance, see

Section 2.E). [Francez and Rodeh, 801 also propose a probabilistic solution

-2-

to synchronization of communication, but make no consideration of the time

efficiency of their solution.

Our paper is organized as follows: We present in Section 2 a model for

distributed communication systems; the model ignores the details of message

transmission but gives a precise combinatorial specification (by time varying

graphs) of the communication synchronization problem. This model also allows

a precise definition of the relevant complexity measures of synchronization

algorithms, such as response time. Section 3 presents our synchronization

algorithms, and in Section 4 we prove various properties of the synchronizaticn

algorithms which must hold with certainty, regardless of probabilistic choice.

Sections 5 and 6 give a probabilistic analysis of the performance of our

algorithms. We have taken considerable effort in the design of our synchroni-

zation algorithms to improve their expected time performance. Nevertheless,

our algorithms are very simple in conception and practice. The Appendix

provides a real time implementation of CSP. [Reif, Spirakis, 82B] presents

a further application: a real time resource granting system. We feel these

applications demonstrate the broad applicability of our synchronization

algorithms.

-3-

2.0 OUR MODEL FOR A DISTRIBUTED COMMUNICATION SYSTEM (DCS) AND ITS
COMPLEXITY MEASURES

Let E={1,2.... I be a fixed, (possibly infinite) collection of

processes. We assume a (global) timc t, on the nonegative real line [0,-],

whereby events of the system are totally ordered. The processes of E are

asynchronous; their speeds may dynamically vary arbitrarily over time and

may even be 0. (Thus, we allow processes to die.) The processes have no

access to any global clock giving the time.

We assume that the effect of a read or write is instantaneous and that

these events occur at distinct time instants, so there are never any

read/write conflicts. In general, a steT of a process is a finite time

interval L in which a single instruction is instantaneously executed at

the last moment of L.

We also assume a global oracle V which directs the willingness of

processes to communicate with each other. (Note that, in applications of

our distributed communication system occurring in practice, no such oracle

exists, but instead each process is running some program which requires f-or

time to time communication with other processes. An implementation of the

DCS synchronizes this communication. The oracle at is utilized as an

artificial device for specifying worst case situations of our system where

communications are required by .il to be made at times most difficult for our

implementation.)

Intuitively, each process i wishes at various times to communicate

with processes in E-{i}. All communication required by the oracle is

implemented by i rather than a global centralized synchronization mechanism.

-4-

Thus system-wide communication is implemented by a distributed scheduler,

the processes of F.

The formal model DCS (for Cistributed Communication System) described

below, has been designed with as few assumptions as possible and as general

as possible. We are not concerned with the values of the messages communi-

cated between the processes, but instead, with simply the es~azi rec: of

corrmrnication. This allows us to avoid any message system dependent assunip-

tions which may vary for any given application.

We now introduce some graphs to describe precisely the DCS model. The

graphs allow us to state the synchronization problems precisely as :ombina-

torial problems on time varying graphs. We give an intuitive description of

the importance of these graphs as they are defined.

Let the connections araph H = (1,E) be a (possibly infinite) undirected

graph with vertex set H and undirected edge set E (>,,) - {(i,i)iE

Then {i,j} EE denotes that iE7 is phzsically able to ccrr7unicae with

jEll - {i} (See Figure lA). H is fixed for all time and can be considered

to be essentially the hardware connections between processes of a. We

assume H has finite valence (i.e. only a finite number of processes are

connected to any given process iE7).

For each time t > 0, the willingness dicrach G = (7,t) is a possibly

infinite digraph with vertices E and directed edges given by relation

~ x H× (See Figure 1B). Then i - j denotes that i En is willing
t t

to conrnmnicate with j En - {i} at time t. In that sense we say i is the

source and j is the target. We require that i - j implies {i,j}EE
t

so i is willing to communicate only with processes which i is able to

communicate with. Also, let i -j iff both i - j and j - i. We use
t t t

-5- I
and to denote that the willingness to communicate holds over time

intervals. For each time interval 6 on (0,-), let i j if i j for

all tEA and let i-j if both i Z j and j i. The edges of Gt

departing from iAT are assumed to be stored locally at i in the form of

a variable set E. which, at time t, contains the names of the targets of i.

E. is specified by the oracle and read only by i.

In the following we assume that there exists a given fixed integer

constant v > 0 such that ViEfl, Vt > 0, the outdegree of i in G (i.e.,-- t

the cardinality of {jli- -j)) is bounded above by v.
t

Assumption Al Two-way communication between any two processes i,jCT

requires only one step of i and j. (Thus, i,j are assumed to communicate

in short "bursts.")

2.A Implementation of a DCS

An iplZementation of a DCS assigns a fixed program to each of the

processes of R. The implementation is sy netric if the programs are indepen-

dent of the position of i in the connections graph H.

For each i,jCf such that {i,j)CE we have a oofr.1nication port flag

PORT.) (written only by process i) which is 1 at time t > 0 if i

has opened its port for communication with j at t, and 0 otherwise

(indicating the communication port from i to j is closed at t). we

assume 2-way communication between i,j is possible at any time that both

PORTi' j and PORTJ' i are simultaneously 1, but we make no particular

assumptions (beyond Al and A2 below) about this communication.
Let i -v4 j denote that PORT, 1 at time t. For each t > 0

t I J

our implementation defines a (possibly infinite) directed graph Mt with

-6-

verticus E1 and directed edges given by the relation cw _- C ,Jxa. Lett -

i 4-A j if both i -' j and j -. i. If i -z J then we say
t t t t

i nas openz d coarrcnication with jE,: -{i} at t. If i then we• t

say i,j aczhicve rrutuaZ co"rTnicaticn at time t. Also, we extend the

notation to intervals L on (0,-) as for Gt

Assumption A2 If i- j and not i - j, t2 > t , then i *-"'.-' i

for some AE[t ,t), where L contains at least one step of each i and j;

i.e. the oraclerl can withdraw willingness to communicate only after

-omnvun1:az:ion has been established and completed.

A:. implementation is rrccr if it satisfies the following restrictions:

R1 l -' '- j only if i j
t

R2 is a (partial) ratching; if ie'"j then not

i - j' for any j'C-{j:".

Notc that RI implies thaz i opens commnication with j only if

i,J are simultaneously willing to comunicate. R2 implies that i does

nc. communicate with more than one prccess at a time.

It is standard in the study of combinatorial algorithms to specify

the combinatorial problem before giving algorithms for the solution. We have

precisely described the problem, of determining a DCS implementation as a

combinatorial problem on dynamic graphs. Later we shall propose two

in-plementations satisfying both these restrictions. Still another implemen-

ta: :n is described in [Reif, Spirakis, 83B).

-7-

2.8. Global State of the DCS

For each t > 0. let Rt be a mapping from n to the nonnegative

reals giving the speed of each process of n at time t. We assume the

speed schedule R = iRt it > 0} is chosen by an adverse oracle .A (possibly

our scheduler's worst "enemy") a priori (at time t 0.) Also, we assume

for each t > 0, d chooses for the processes of I the willingness digraph

Gt at time t. Thus, Gt may vary dynamically in time, depending on the

choices of the oracle d. However, for each t > 0, the digraph Xt is

defined by the processes of E, which attempt a distributed synchronization

of the DCS, depending on our given implementation. In addition, we allow the

processes of R to make independent probabilistic choices.

Let Lt, the luck UP to time t, to be the probabilistic choices made

by the processes of R, up to time t. Then, the global system state at

time t is given by

Zt = <R tG tMtL t't>

and the global history up to time t is

rt = {Z 'I 10 < it <

Thus, we have a probabilistic multiplayer game of incomplete information,

where the omnipotent oracle d plays against the team of processes of R

which have only incomplete information on the current state of the system.

We wish measures of the success of the processes of I.

I
-8-

2.C. Time Complexity of a DCS Implementation

A process step consists of either an assignment of a variable, a test,

a logical or arithmetic operator, or a no-op.

Let process i be tane on an interval A, if for any interval

A' E [0,-), if A' intersects L and L' is a single step of process i,

then [A'I E [r min,r max], where r in, rmax are fixed real constants and

0<r n (ra (without loss of generality we assume that rma/rmn is
mn maxma mi

an integer.)

We shall not assume that processes are tame at all times. Our DCS

implementation will be proper regardless of whether processes are tane as

long as their speeds are nonzero.

Let processes i,j have successfuZ communication at interval L if

i 4- j and A contains at least one step of both i and j. We sayA

is a response intervaZ for processes i,j if A is a maximal time inter-

val such that

(1) i j.

(2) i,j are both tame on A, and

(3) i,j have successful communication at most just at the end of

A, if at all.

Note that if there is successful communication during an interval L'

within A, then, by (3), A' is a suffix of A. Also, note that since

is maximal, either i,j were not mutually willing to communicate

immediately before A, or A begins at time 0, or the instant immediately

before A is the end of a previous response interval.

Let a com7unication request be R= (t,i,j) such that t is the

starting instance of a response interval for processes ij.

-9-

Note that there is a unique communication request associated with

each response interval.

Let the response time of a DCS implementation, for any oracle -A

and communication request R, be the random variable TR giving the

length of the response interval associated with R. Let T =maximean{T , }

for each oracle oi and communication request R .

For each £, 0-El, let the E-error response T(E) (note: this

is a function, not a random variable) be the least upper bound on the set

of the Values of the inverse functions of the cumulative distribution

functions of T at l-E, for all .4 and R. Thus, if we have a

finite interval A, LI r(E) and any two processes i,j which are tame

on L, for all oracles ., i j implies i,j have successful communica-

tions sometime within A with probability i-E.

Note that time response as defined above for pairs of processes also

holds for communication between sets of processes. Suppose we have finite

sets or processes 1 f2 C T such that L 1 1, In21 <v and for the same

interval A of length ->T(E) and for all i in Fi and all j in 2'

i - j. Then, each process i of E1 is guaranteed at least (1-E) 2 f

probability of successful communication with all the processes of 12'

within L. This implies a very robust type of fairness.

The DCS implementation is reaZ time if for all E, 0 <E l, T(E)

is a constant dependent only on v (assumed to be a constant upper bound

on the outdegree of vertices of G t). Note then that T is also bounded

above by a fixed constant dependent only on v.

i I I I III l i

-10-

2.D. Preferential DCS Implementations

We also consider the cases where any given process i ER may assign

a priority to the processes j Efl- {i} which i wishes to communicate

with. In the simplest case, which we only consider here, i distinguishes

the first target of communication, E. (1), which i prefers to communicate

with. (Process i may communicate with the other processes of E., but i

prefers to communicate with E. (1).)1

For each to'0, -' is the relation on f XT such that Vi, j E
t

i -,' j iff E (1) =j at time t. Also let i -' j if i "' j VtEZ.
t i t

We say A is a preferential response interval for ij if L is a

maximal interval such that

(1) i'j and j

(2) i,j are both tame on ', and

(3) i,j have successful communication at most just at the end of ',

if at all, i.e. if i j then A' is a suffix of

(Note that only the first process has to distinguish the other as the first

target.)

Let a preferential comnmnication request R= (t,i,j) be such that

t is the starting instant of a preferential response interval for i,j.

Note that there is a unique R associated with each response interval.

We now define the time complexity of preferential DCS implqmentations in a

similar way: Let the preferential response time of a DCS implementation

for any oracle d and preferential communication request R be the random

variable T' which gives the length of the preferential responsedd, R

interval associated with R.

Let T' =max{mean{ },R for all oracles 4 and communication

requests R}.

For each £, 0 < E <i, let the E-error pref'erentia! reso:nse -'(&) be

the least upper bound on the set of the values of the inverse functions of

the cumulative distribution functions of T ,R' each evaluated at l-E,

for all -1 and R.

Thus, if we have a finite interval A, 1I")IT' (-) and any two

processes i,j which are tame on A, for every oracle d, (i ,' j and

j - i) implies i,j have successful communication sometimes within

with probability >l-E.

The DCS implementation has reaZ time rrefercntial response if for all

E, O<e <l, T*(E) is a constant dependent only on v (and not on any para-

meter of H). Note then that T' is also bounded above by a constant

dependent only on v.

It is useful tc observe that, given T'(c), any given proces iE?

may determine (with any given probability) whether any process j E 7 - {i

is willing to communicate with i over a given time interval in which

both i,j are tame, given {i,j}EH. The same holds if T() is given

instead of T' (E).

PROPOSITION 2.1. Let d be anyi oracle and A be any tirme intervaZ

of finite length >T(o) (T'(E) in the case of preferential DCS.

Suppose i,j are twne on A and {i,j} EH. If there is no tEA such;

that i '--,- j, then j is not wiZling to cormunicate with i sometimet

within A, with probability >l-E.

This proposition may be used for timing out requests (or preferential

requests) to communicate with a specific process.

(Note: Suppose we are given a process j, a set of processes

2 cfl and an interval AT'(C) such that for all iEEl, i -' j and

1-

-12-

j Z i. Assume also, all processes in EI U {j} are tame on L. Then, for

each iE 1 1 and for all oracles .d, i,j have successful communication

sometime with A, with probability >l-E. Furthermore, if 111 1 v, then,

for all oracles j', j will have successful communcation with all iE 71

within A, with probability >(I-)

2.E. Results and Previous Work

The primary results of this paper are:

There is a proper real time implementation of DCS such that

- 2
(1) the worst case mean response T is O(v2).

(2) the S-error response T(E) is O(v2 log(-)).

Also, there is a reaZ time preferential implementation of DCS such that

(1) worst case mean preferential response 1' is O(v);

(2) the S-error preferential response T'(E) is O(v log(")).

Our implementations are proper, symmetric, and are completely inde-

pendent of the connection graph H (H may be any finite or infinite graph

with finite valence). We allow processes to make probabilistic choices and

show that our algorithms have real time response.

The best previous result is due to [Schwarz, 80] and is restricted to

the case H is finite and its edges can be directed to form a digraph h'

which is acyclic. Let X(H) be the minimum vertex coloring of any such H'.

Essentially, the technique of (Schwarz, 80] is to color H' and order the

precedence of message transmissions by the coloring. Delays in message

transmissions can be as long as X(H) since chains of processes (of length

X(H)) can be formed in which each process waits for the next to reply. So

the deterministic DCS implementation of [Schwarz, 80] has preferential res}'c,se

-13-

time T' lower bounded by v'X(H). Note that his implementation is not

real time, since in general X(H) is of size IfI. In contrast, in our

implementation. the time-varying willingness digraph is assumed to have

bounded outdegree, but we see no way of Schwarz's algorithm to take ad-

vantage of this. Also, his DCS implementation is not symmnetric, since

processes are required to know their color in H'.

Also, [Lynch, 801 gives a solution to a distributed resource alloca-

tion problem which in [Reif, Spirakis, 82B] is adopted to yield a DCS

implementation with response time v-X(H). In (Reif, Spirakis, 82B] we show

that a uLiass of generalized resource allocation problems related to those

of [Lynch, 801 may be solved in real time by our DCS implementation (with

vanishingly small probability of violation of the real time property).

[Francez, Rodeh, 801 proposed a probabilistic synchronization algorithm

which can be considered to be DCS implementation. An important difference

between our implementation and theirs is that in the responding phase, in

our algorithms, each process reponds to all processes to which it is

willing to communicate, while in [Francez, Rodeh, 80] only one process is

considered at a time. Although [Francez, Rodeh, 80] make no explicit

timing assumptions, they do assume that setting and resetting of shared

variables takes only a negligible time compared to the waiting time of

processes, which is a much stronger assumption than ours. The careful

consideration of timing in our paper is crucial to our achievement of real

time response (see also the analysis) and such timing considerations were

essentially not considered in any previous papers on synchronization.

II
-14-

3. OUR IMPLEMENTATION OF A DCS

To implement a DCS, we must give an algorithm for each process in

We present here two such implementations. Both satisfy restrictions RI, R2

required by proper implementations, and both are symmetric: Each process

has the same algorithm regardless of its position in the graph H.

Processes have Algorithm 1 in our "non-preferential" implernentatio, and

Algorithm 2 in our "preferential" implementation. We show in Section 4 that

both implementations have real time response.

Each program variable X of the system may be written by exactly one

process iE 11 and either X is read by only one other process j E- - {i'

(in this case X is a fZa3 from i to j) or X is ZocaZ to i (X is

read only by i).

Our following description of the DCS implementations will be given

top-down with a high level specification of the algorithms given first and

then a specification of the procedures ASK,RESPOND which they call. (The

procedures ASK,RESPOND utilize numerous flag variables which are

irrelevant to the overall understanding of our algorithms.) Also, before

giving the formal specifications of any algorithm or procedure, we provide

an informal description of its actions. The actual formal algorithms have

been written carefully to satisfy certain timing restrictions required by

our analysis to achieve real time response.

In both algorithms, each process repeatedly throws a fair coin and

then executes a phase. Each phase is either asking or responding and is

chosen by the coin throw with probability 1/2. This is used to ensure

each process is in either phase half of the time or the average.

... ... m I O IE I I I Bi l I - -.--. ,_- .

- -... ' 7... -.. .. . _

-15-

Informal Description of the Non-preferential Algorithm 1

In a responding phase, process i repeats a loop m times, where
rmax

m= (v+3) + 1. On each iteration of the loop, process i chooses at
r
min

random a process j from the processes i is willing to communicate with,

and executes procedure RESPONDi (j). This procedure takes constant cR

number of steps. During these steps process i reads a flag to determine if

j has recently been willing to talk to i and then sets a flag so as to

later verify that j pays attention to i. These verifications are done by

handshakes. (A handshake is the use of boolean flags to verify exchange of

a single bit of information). If so, processes i and j synchronize their

steps and then both open communication to each other. In either case, i

repeats the loop until the corresponding phase finishes.

In an asking phase, process i chooses only once at random a process

j with which i is willing to communicate, and then i executes procedure

ASKi (j). This procedure takes CA='cR-m steps (so that both phases take

exactly the same number of steps. As a consequence, process i is in each

phase half of the time on the average. This is important to the analysis).

During procedure ASKi (j), process i raises a flag to show to j that it is

currently willing to communicate with j, and then pays attention to j for a

limited number of steps to test if j responds to the attempt and wants to

proceed in communication. If so, then processes i and j synchronize their

steps and then both open communication to each other. If not, then i

finishes its current phase by setting its flags to 0.

-16-

Informal Description for the Preferential Algorithm 2

Each process i executes forever the following loop:

It chooses with probability 1/2 to execute a respond phase or a

modified ask phase. The respond phase is identical to that of Algorithm 1.

However, in the modified ask phase, process i chooses the distinguished

first process E.(1) as the process to which it will apply the procedure

ASK..1

Formal Definitions of Algorithms 1 and 2

We now give Algorithms 1 and 2 in full detail.

Algorithm 1 (non-preferential implementation)

Program for process i E Ti

INITIALIZEi (;

WHILE TRUE DO
BEGIN

L2: CHOOSE a random b E {0,1
IF b= 0 THEN

BEGIN
COMMENT: respond phase

L3: FOR x=1 to m DO
BEGIN

CHOOSE at random jE E.
RESPOND (j) ;

END
END

ELSE
BEGIN
COMMENT: ask phase

L4: CHOOSE at random j E E.
ASKi)

END
END

OD

f

-17-

Algorithm 2 (the preferential implementation)

Program for process i E

INITIALIZEi(
WHILE TRUE DO

BEGIN
LI: CHOOSE a random bE {0,1}

IF b= 0 THEN
BEGIN
COMMENT: respond phase
L3: FOR x= 1 to m DO

BEGIN
CHOOSE a random j E E.
RESPOND i (j)END

END

ELSE
BEGIN
COMMENT: ask phase
L4: ASK. (E. (1))
END

END
OD

3.A. Intuitive Description of the Procedures ASK,RESPOND

The procedures ASK.,RESPOND are utilized by both algorithms.

For each i,j ET such that {i,j} EH there are three Zags (boolean

variables) Qij, Aij, Bi which are written only by i and read only by

(1) Flag Qi,: Just before each phase, Qij =0. Then i asks j by

setting Qij to 1 in the ask phase. Qij is reset to 0 before

the end of the ask ise.

(2) Flag A.j: Just before each phase, A.. =0. If i is in the

responding phase and detects Qji = 1 (indicating j "asks" i)

then i answers j by setting A. = 1. Before the end of the

answer phase, i resets A.. to 0.

-18-

(3) Flag B..: This variable is set to 1 by i only during the
13

"watching window" which is the interval when i is in the

asking phase and is watching for an answer (A.. = 1) from j.1)

At all other times, B. . is set to 0 to indicate i is o1:,

to answers by j.

Another flag PORT.. is utilized by the low level procedure GPEN-C0!

to specify the state of the communication port from i to j. As defined in

Section 2, i (- j iff PORT.. = 1 at time t. (OPEN-COP. is called by
t 13

ASK, and RESPOND. as the final act in a successful communication attempt.)
1 1

If process i executes ASK. then it first sets a flag variable 2

to 1 (to indicate to j that it asks) and sets another flag B . to 1 'to1,]

indicate to j that it pays attention to it, i.e., i is not blind to answers

by j). It keeps these flags raised for at most a constant number cB stes

and during these steps it continuously examines the flag A. . (the answe-rJ ,1

flag of j). If the interval finishes with no answer from target, then I

first B. to 0 (to show that it stops paying attention to j) and rkcl. it

sets Qi,, to 0 to drop the question. This order of actions guarantees that

process j will interpret correctly what it sees from the flags of i.

If i gets an answer from j (that is, if A. . is set to 1) duranc
3,i

the (previously discussed) cB steps, then i first sets Q.. to C (but

keeps B. . to its current value to indicate that it continues to pa%i,j

attention to j). Process i waits until j also zeros its flac A

and then process i calls OPEN-COM (j) immediately. As the analysis shows,
1

the events leading to this call guarantee that communication is achieved

between i and j during the execution of OPEN-COM, assuming i and 3

are tame (we do not use a handshake protocol within OPEN-COM since certain

-19-

technical constraints (see Lemma 4.6) of our analysis would be violated

(namely, if i is tame but j is not, i would unnecessarily delay in

OPEN-COM and this would cause problems to communization between i and

otner tame crocesses). At the end of OPEN-COM, i sets B.. to 0 (showing1,3

that it stops raying attention to j) and exits Lrocedure ASK..

If process i executes procedure RESPOND. (asker), then it first

examines if Qasker,i is 1 (i.e., if asker is interested in communicating

with i). If so, then i sets A. to 1 and waits until process asker
I ,asker

zeros its question flag(this is the "handshake" technique). When this

happens, then i tests Baskeri to see if process asker still pays attention

to i. If not, then i zeros its answer flag A i,asker and exits. Else,

i knows that asker waits for step synchronization and communication. So,

i zeros its flag A s and calls OPEN-COM. (asker). The analysis
i,asker I

shows that the events leading to this call guarantee that communication will

be achieved.

We now introduce some terminology and then develop tie algorithms in

full detail.

A process i is in the asking mode when it executes procedure ASK,

and it is in the responding mode when it executes the procedure RESPOND. If

i is executing ASK(j) and B..= 1 then i is in a watchino windo for1)

process j else i is biind with respect to j. We say i is arswered b

j if i is in its watching window for j and i exits lopp A3 of procedure

ASK, with a=1. A phase of the algorithms consists of the steps betweeni

random choices of the variable bE {O,l}. If b =0 the process is in a

responding phase and else it is in an asking phase.

We have not elaborately commented on our procedures because of the

extensive informal description preceding them.

-20-

The variables of process i are initialized as follows:

INITIALIZE. ();1
BEGIN

for all j E". such that {i,j"EH do
BEGIN

Q ij0

A. *0
1)

B. *0
1)

PORT..- 0
END

END

In the following two procedures, we assume a register CURSTEP which

gives the current number of the steps executed by process i since it was

last zeroed. (CURSTEP is assumed here only as a convenience, it is clear

that we could substitute instead a new variable that is incremented on

every step of the original Algorithm.)

We have made extensive use of time outs to guarantee that the number

of steps of the execution of procedures RESPOND, ASK are each always

exactly the same. (This is crucial to our proof of real time response.)

We define the parameters appearing in the procedures:
r r

Let cR= 7+(12 -) - ; this will be precisely the number ofr . r.
min min

steps always required by procedure RESPOND (see justification in Lemma 4.3).r

Let m= (v+3) rmax + 1. Let cA = cR-m; this will be the number of steps
min

required by procedure ASK. Let cB = cA- cR; this is the number of steps
r

required for a watching window. Let cp = 2 + 3 - ; this is the number of
rmin

steps required in procedure OPEN-COM. Let cD = cA - cp -2 and cE = cR -7.

These parameters are used to time-out the execution of various loops in our

algorithms.

-21-

PROCEDURE ASK. (target)1
local a

BEGIN

Al: CURSTEP* O

A2: Q i, target

a *-O

B.
1,target

COMMENT: Begin watching window for target

A3: WHILE CURSTEP< cB AND a= 0 DO a*Atargeti

IF CURSTEP >c B AND a= 0 THEN B t t0.. B .. i, target

Qi,target*. 0

IF a =1 THEN

BEGIN

A4: WHILE(A target,i= 1 AND CURSTEP< c D) DO a4AtagtiD- targe t, i

A5: IF a= 0 AND CURSTEP <c THEN OPEN-COM. (target)

END

COMMENT: End watching window for target

B.1, target

WHILE CURSTEP< c A D a nonoperative step.

END

PROCEDURE RESPOND. (asker)1
local q

BEGIN CURSTEP-4-0

q-Q asker, i

B1: IF q =1 THEN

BEGIN

Ai, asker-1

B2: WHILE(CURSTEP< c E AND q=1) DO q -Qasker,i

q (q OR B k =1 OR CURSTEP> cE)
i, askerB3: A i,asker -0

IF ,q THEN B4: OPEN-COM. (asker)-- 1
B5: WHILE CURSTEP <c R DO a nonoperative step

END

-22-

PROCEDURE OPEN-COM. (j)

BEGIN

PORT..

DO Cp - 2 nonoperative steps

PORT..* 0
1)

END

4.A. Correctness Properties of the Algorithms which Hold with Certainty

Our algorithms are probabilistic and therefore some of their

properties (such as response time) only hold with a certai-.' nrcbaZz-,

and not with certainty. A probabilistic analysis of these properties is

given in the next sections. However, in this section we prove properties

of the algorithms which hold with certainty, regardless of probabilistic

choice. We show restrictions Ri, R2 are satisfied by our implementations,

and thus they are proper. (Of course, we assume either all the processes

in n execute Algorithm 1, or they all execute Algorithm 2.)

LEMMA 4.1. For both algorithmns,

i j Only if i - j
t

Proof. Process i calls OPEN-COM. (j) and opens its channel to1

j only if either (a)i was executing an asking phase and exited the loop

A3 with a =1 or (b)i was executing a respond phase and exited the busy

wait B2 with Bj i 2 i. In both cases, i was willing to communicate with

j in the start of the execution of its phase, since i asks (or responds)

only to processes it is willing to communicate with. So, i - j wherekto

-23-

t' was the time of start of i's phase. By assumption (A2) then,

i.-j.

In case (a), a = 1 means that j responded by setting A. . to 1

to i's question. So, j - i for some t" < t and by assumption A2),

j ~i

In case (b), j was the process setting Q.,i to 1 at the beginning

of i's phase. Hence j i i and, by (A2) , j - i.

In both cases, i --- * j implies i *-+ j.t t

LEMMA 4.2. For both aZgorithms,

is a partiaZ matching.t

Proof. Since each process opens communication to at most one process

each time, (this is so since the programs in both algorithms are sequential

and each neighbor is asked or responded to separately), the relation -- +t

is one to one. Hence ' cannot be more than a matching. a
t

COROLLARY 4.1. Both algorvithis give a proper implementation of DCS.

4.B. Timing Lemmas Which Hold With Certainty

Timing is an important aspect of our algorithms. The following

lemmas are essential, but somewhat tedious to prove.

LEMMA 4.3. Ass8me i,j are tame. For both aZgcrithms, if i is

answered by j, then i,j have successfuZ cmmnication., within
r

(12 + 4 rmax) steps of the sZower of i,j from the time i exits Zoop A3.
rm.mmn

-24-

Proof. If i exits the A3 loop with a= l, then (since no process

but j can assign to A. .) at the same time j must be executing
j3,1

RESPOND.(i) at the B2 loop. Process i will arrive at A4 within 4 of its:3

steps and will have by then set Q.. to 0. These 4 steps of i correspond

to at most 4 r /r n steps of j, during which j will have exited the
max

B2 loop. Also at this time, the assumption that i exits the loop A3

with a = 1 implies that B.. = 1. So, j will arrive at B3 and set A.
13 3,i

to 0 in at most 4 of its steps from the time it exited the B2 loop.

Within r max/r min steps of i, process i exits the A4 loop. Then,

within two of i's steps i will call OPEN-COM. (j) and within one of
1

j's steps j will call OPEN-COM.(i). Note that both i,j will set3

their respective port flags PORT., PORT.. to 1 within one step of the13 31

slower process (or, within at most r max/r n steps of the faster). They

keep their ports open for cp - 2 =3 rm/ri steps each. This implies

that both processes will overlap for at least 2(r max/rmin)-rmin =2 rma x

time, guaranteeing at least 1 step overlap of both processes. Thus, i,J

have successful communication. Note that OPEN-COM takes c p steps.

Counting steps of i plus those of j in nonoverlapping time intervals,

we have a total of 4+4+r max/rmin + 2 +cp = 12+4 r max/r min which is

certainly an upper bound to the steps of the slowest of the two processes.0

LEMMA 4.4. For both aZgorithms, if i,j are tame on L' an-

i +-?--j for a maximal interval 6', then L' contains at !cast a etc,

of both i and j and Ij'I= o(l). (This ensures that A' is just

long enough for i,j to coamrnicate.)

-25-

Proof. The only sequence of events leading to this is the sequence

in which one of i,j is in its watching window for the other and is

answered by the other. By Lemma 4.3, then, A' contains a step of both

i,j. Since A' is not greater than cp steps of either process, then

2
= max +3 rax/r min a

LEMMA 4.5. For both algorithms, if i,j are tame on A and

i -i- j for a maximal interval A, then i j for some A' cA.

Furthermore i,j have successful comunication during A'. (I.e., a tane

process never opens its channel to another tame process without cor,.mnicatin $

with it.)

Proof. The only sequence of events leading to i 4 j is the

sequence in which one of i,j was in its watching window for the other

and is answered by the other. By Lemma 4.3, 3A'cA such that i,j have

successful communication during A'. 0

In the following lemma, we need not necessarily assume that i is

tame.

LEMMA 4.6. If iE T executes procedure ASK, then precisely cA

steps of i are required for the execution of this procedure. Execution

of RESPOND by i requires precisely cR steps of i. Also, cach phase

of either Algorithm 1 or Algorithm 2 requires exactly cA+ 2 steps.

Proof. By observation of timeouts within the procedures ASK and

RESPOND and by the definition of cA = m-cR.

Let c=m/vc R . Then c-v is the number of steps required for each

phase.

COROLLARY 4.2. The time required for each phase is upper boundcd Lz

cvrmax'

-26-

5. PROBABILISTIC ANALYSIS OF THE RESPONSE TIME OF THE ALGORITHMS

Intuitively, in both algorithms, the ASK or Respond phases take

O(v) time each. In the worst case of the non-preferential algorithm, it

requires O(v) expected executions of the ASK phase to choose any given

willing neighbor, if the set of willing neighbors is O(v). Given that

a given neighbor is chosen and he is willing, communication will be

achieved with probability bounded below a constant. Hence, we expect

the average time of response of teh non-preferential algorithm to be

O(v).

On the other hand, in the asking phase of the preferential algorithm

we ask a specific neighbor and we have a constant probability to

communicate with him, if he is willing. Thus, the expected total number

of phases will be O(1) and so the expected response time of the

preferential algorithm will be O(v) in the worst case.

A formal analysis follows:

By Corollary 4.2, cv is the total number of steps of the asking or

responding phase and fix throughout this section I to be an interval,

starting at time to, of length at least 4 phases (i.e., III 4cvr max.

Let rt0 be the global system history up to t0 and let W be a

fixed oracle. Note that (.d, t) essentially specifies everything of the

system's immediate future except "luck" Lt, for t' >t 0 . Consider two

processes i,j such that {i,j}E H and i j and i,j tame on I.

Let tj =min{t> t0tj does a phase selection at t) and

t. =min{t>t 0Ii does a phase selection at t).

Let t m max(ti ,tj) and let t ii,ti 2 (and t jl,tj2) be the next two

m lj

-27-

phase selections of i (and j respectively) after t such thatm

t nt il ti2

and

t <t <tj
mn ji j2

Let

t M =max(t i2,tj2

The interval (t0,tM] is called a session S of processes i,j.

(See Figure 2). Note that a session has <3 phases of one of the

processes i,j and hence its length is <3cvr- max

Let aij (.,f t) be the probability that i,j will establish

communication during session S = (to,tM] given (,Fto0

Let W be the class of oracles ,At for which the outdegree d ist

set equal to v for all nodes i in G and for all instances t.t

PROPOSITION 5.1. The response time of AZgorithvn I increases zaith

increased requests to communication.

Proof. The probability that a specific process is chosen in the ASK

or RESPOND phases decreases monotonicallj with the number of processes to

which the process executing ASK or RESPOND is willing to communicate. 0

By Proposition 5.1, the class of oracles V gives an upper bound in

the response time of the system, since adding requests to communicate

cannot decrease the response time.

COROLLARY 5.1. For oracZes .4E , a. .(.",F) 1/v for the
iJ to

nonpref erential Algorithm 1.

-28-

Consider the event E = {process i is in the responding phase in

the interval Ai = t il,ti2) and process j is in the same asking phase

and waiting in a watching window for i, for at least (v/2)cR steps of

process i during A.}. Let xi (.,'t0E) be the probability that i,j

will establish communication during session S= (to,tM], given (,P)

and event E.

PROPOSITION 5.2.

ij (,rt 0 ,E)-Prob(E given(-,Fto)) < Gi. (/,Fo

(Proof easy).

Note that for both algorithms the following holds:

PROPOSITION 5.3.

xi-(.'Fto'E) > 1i- 1 v/ > 1-e- 1/

since given E, it is enough for i to select j as the process to answer

for at least one of the at least -i consecutive (Answering intervacs whic.
2

overlap with the watching window of j.

THEOREM 5.1. For Algorithm 1, we have

Prob(E given (.', t0)) > 1
t - 4v

Proof. The length of a watching window of j is cB = cR' (m-l)

steps of j, which is at least cR" (m-l)-rmin time, which is at least

cR " (m-l)rmi n r c (v+3)

Max

steps of i.

-29-

Let A, = [t il,t 2). The interval A. either contains at least

half of a phase A. of j, or half of it is contained in a phase A.3

of j. (See Figure 3). In either case, given that j is asking i

during A. and that i is responding during Li, there is an overlap

of the watching window of the phase A. of j and of phase A. of i3 1

which contains at least cR steps of i. Since both phases L. and2 3

A were selected in the session S after tO, during probability of j1

asking i during A. is >l/2v and the probability of i answering3

during P. is 1/2. Our theorem follows by multiplying these probabilities.o1

THEOREM 5.2. For Algorithm 2, we have

Prob(E given (,t0)) > 1

Proof. Same as in 5.1. The only difference is that now j insists

on asking i and hence prob(j asking i given j in asking phase and

preferring i) = 1. 0

Let

-L (le-I/2), = for Algorithm 1
min 4v max v

and

1 le-1/2)
(-e = 1 for Algorithm 2rrin 4 ' max

THEOREM 5.3.

min- ij tO -0 max-

Proof. By Theorems 5.1, 5.2, Propositions 5.2 and 5.3 and

Corollary 5.1. 0

-30-

Note that our lower bounds on xij (4,tr oE) and prob(E given
'3tt

(4,t)) do not depend on .4 or Fr This is so because all inequalities

hold for any possible speed ratio of processes i,j and because the results

of choices of phases for times t> t in session S do not depend on-m
or F

to

Let P. .(kl(.d, F)) be the probability it takes exactly k

sessions for processes i,j to succeed in establishing communication,

given that i j (or i -' j and j i) for a time interval A

starting at to, such that C I.

Let So =t0 , S ,...,Sk 1 be the starting times of these sessions.

Then, by Baye's formula,

Pij (k l (.d,) = (-ij ' (.4F)(I-.i(.d'S))
1 0 13 ' 0 1~

(i-. (k 2,F 2)) . j ('Sk-

Since for all 4, all Ft

mi n - ij t - max

we have

P.i (k ('dFr)) < a (_C) .i)k -I
1) t 0 -max mi

and

F t 0)) k - iP .(kI(.djT > >0. (1-0 k
ij 0 -min max

By using the above inequalities and calculating the -ean, we get

LEMMA 5.1.

mn 2 < mean(k) < max

(a)2 - (2(max (mn

-31-

and, by known expressions about tails of geometrics, we get

LEMMA 5.2. VE, 0 < < I

Prob{k> k (E)} < E
max

where

log ((O mi n ")/oma xk (E) = rn a
max log(l-O n)

Recall 3cvr is an upper bound on a session length. Lemmas 5.1max

and 5.2 imply

THEOREM 5.4. If T is the response of the system, then

a

mean(T) < 3cvr max
max) 2

min

and if T(E) is the E-error response, then

T(E) < 3cvr *k (E)-- max max

By using c = (1 + 3) m ax a
v, r mn max mn

-.r •CR and the 0ma,Omi of Theorems 5.1
mnn

and 5.2, we get

COROLLARY 5.1. For A Zgorith 1

mean(T) < 48(1-e -/2) -2(r2 /r)cR + v2

or

mean(T) = O(v 2)

and log ((I-e1 /2

max logy-L (1-e

imp Zying

-32- (

t(E) < 3cvr 'k (E) = v 2 log(4T(E < C~max kma x

Also, by using the derived 0 . , a for Algorithm 2 we getmln max

COROLLARY 5.2. For Algorithm 2,

mean(T) < 48(1-e-1/2)(-2 max 3cRl + 0)v 0(v)

and

k (E) lg(4 (l4e-i
2))max log (1e0(o

impZying

6. CONCLUSION

We have provided two real time implementations for the DCS system.

A key assumption on our time analysis is that processes have to be tame

during attempts to communicate, but at other times processes need not be

tame. This improves a previous version of this paper [Reif, Spirakis,

1981A], where we required processes to be tame at all times.

A referee has suggested a modification of our algorithms which may

be of practical use in speeding up the expected time response in some

practical cases. The modification presumes that the connections graph

has fixed valence (otherwise, an infinite number of variables per process

is required). The idea is to allow each process to have additional flag

-32-8

variables which indicate to other processes its willingness to communicate

with them. (We had presumed that the set E. can only be read by process

i), so the idea requires additional flag variables. Those modified

algorithms will have worst case performance identical to those given in

our paper.

In a further paper, [Reif, Spirakis, 1982], we have relaxed our

assumption of tameness. In that paper we require only bounds on the

relative acceleration of ratios of speeds of neighbor processes. We

propose there synchronization algorithms which have relative real time

response, where communication is established with high probability

between any pair of processes within constant number of steps of thE

sZwest process. However, these algorithms are less efficient than those

given in this paper. Also, in the Appendix of [Reif, Spirakis, 1982],

we are applying our synchronization techniques to ADA for a relative real

time implementation.

Acknowledgments

The authors wish to thank Ed Clarke, who introduced us to the

synchronization problems considered in this paper, and Michael Rabin,

whose previous work in probabilistic synchronization inspired this work.

Stavros Macrakis is thanked for helpful comments on our real time CSP

implementation. Also, the referees made many very useful comments.

.4

-33-

References

Angluin, D.. "Local and Global Properties in Networks of Processors,"
22th AniuaZ SVmpoaiw on TAory of Couiting, Los Angeles, Cal.,
April 1980, pp. 82-93.

Azirmandi, Z., N. Fischer, and N. Lynch, "A Difference in Efficiency
between Synchronous and Asynchronous systm," 28th ArseZ
Smosw on TMor of Co uting, April 1981.

Bernstein, A.J.., 0Output Guards and Nondeterminism in Communicating
Sequential Processes," ACM fran. on PF'og. Lang. and Systets,
Vol. 2, No. 2, April 1980, pp. 234-238.

Francez, N. and Rodeh, "A Distributed Data Type Implemented by a Prob-
abilistic Commication Scheme," 21st AnnuaZ S ,poeizr2 on
Poundation of Cowputer Scienoe. Syracuse, New York, Oct. 1980,
pp. 37.-379.

noare, C.A.R., OCommunicating Sequential Processes," Cam. of ACM,
Vol. 21, No. 8, August 1978, pp. 666-677.

Lahmann, D. and N. Rabin, "On the Advantages of Free Choice: A
Symmetric and Fully Distributed Solution to the Dining Philosophers'
Problem," to appear in 8th ACM Sympoaiu on Pri..ipZes of Progr=
Lwigqua, January 1981.

Lipton, R. and F.G. Sayward, "Response Time of Parallel Programs,"
Research Report #108, Dept. of CAuter Science, Yale University,
June 1977.

Lynch, N.A., "Fast Allocation of Nearby Resources in a Distributed

System," I2Mh Avmw Sy oeium on 2Tho? of COMuti g, Los Angeles,
ORlif., April 1980, pp. 70-81.

Rabin, N., "N-Process Synchronization by a 4 log9q-valuad Shared Variable,"
2slt Awmm SpJposi on Pouwdatiow of Co.Vuter So.ewe8 Syracuse,

New York. October 1980, pp. 407-410.

Nbin, W., "Nth Choice Coordination Problem," Ms. No. UCM/EZM 10/38,
Zlectronics Research Lab., Univ. of California, Berkeley, Aug. 1980.

Reif, J.H. and P.G. Spirakis, "Distributed Algorithms for Synchronizing
Interprocess Comununication in Real Time," Thirteenth Annual ACM Symposium
on Theory of Computing, Milwaukee, WI, May 1981.

Reif, J.H. and P.G. Spirakis, "Unbounded Speed Variability in Distributed
Systems," Techn. Rep. 14-81, Aiken Comp. Lab., Harvard University, Aug.
1981; 9th ACM Symp. on Principles of Programming Languages, Albuquerque,
NM, Jan. 1982.

-34-

Reif, J.H. and P.G. Spirakis, "Real Time Resource Allocation in a
Distributed System", in ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, Ottawa, Canada, August 1982(B).

Schwarz, J., "Distributed Synchronization of Communicating Sequential
Processes," DAI Research Report No. 56, Univ. of Edinburg, 1980.

Valiant, L.G., "A Scheme for Fast Parallel Communication," Technical
Report, Computer Science Dept., Edinburg Univ., Edinburg, Scotland,
July 1980.

-35-

APPEND!X
A REAL-TXNE XDPLEIEWATION OF CSP

(Rloame, 19783 introduced a concurrent programmiing language CSP

(for Cmunicating lequential Processes). The CSP language is notable

for the legane. of its synchronization constructs: They are powerful

and yet simple. [Bernstein. 1980] describes an extension of CSP which

allows both input command and output coamiands as guards. Here we briefly

describe CSP with Bernstein's extenD ion and present a real-time Implmen-

tation of the synchronization constructs.

CSP Synchronization Constructs

The relevant aspoets of CSP concern its process structure and cI.-

munication mechanisms. Concurrent execution of processes P.. P2 . .." Pn

Is denoted

Mach process has its own set of variables which are inaccessible to all

ather processes. The cowiunication primitives are the output .aomrtmd

P j J that requests that P jreceive the value of u and i~put 00'Pand

P~twhich requests that P I send a value which is then ass igned to x.

There are two relevant compound statements. The a~teirnti* sittement

[.61 '0 C1 a G * C2 a ..* a r- C 3

-36-

contains guards Gr....Gk and command lists C,...,C k . Zach guard consists

of a list of elements which may be a sequence of booleans, followed by at most

ce input command or (in Bernstein's extension of CSP) an output omand.

The execution nondeterminately chooses a guard G. which is satisfiedI

(to test that, it executes each element of G, frm left to right) and then

executes the corresponding comand list C.. If no guard is satisfied, the
1

alternative statement faiZl. The repetitive statement

k Id

results in the repeated execution of the alternative statement

G 1 .C 1 0 ... OGk*Ck], until no guards are satisfied.

Note that the crucial problem in implementing CsP is to synchronize

executions of input commands Pi ?x by process P vith output coemands P. u

by process P so that the value u is transmitted to x.

It is very easy to implement CSP by DCS. (In fact, this was the

original motivation for our work on DM). Let C be a system-wide constant,

which my be fixed to any arbitrarily shall constant on the interval (0,1).

We assume a .aZ time D Lplentation with C-error response time T ().

Let v be the aximum nmber of guards appearing in any alternative or

repetitive statementi we assue that v Is constant relative to the total

number a of processes. We also iume that the length of the guard lists

Is bounded by a small fixed constant. No also asomme all processes reliably

eune te their progrems and satisfy assunptions Al and A2.

Out CSP W plementation Is Yea-tmw In the sense that there exists a

'positive integer I (which is independent of the naoer of ptemees u)

such that If f sam alternative at repetitlve statement 3 ame guard G

-37-

is continuously satisfied for a time interval L of length ;01 and if the

processes of G and the process executing the statement are tame an b,

then the comand list associated with some satisfied guard is imnediately

mcuted with probability ;P I-C and otherwise, a faiZure emit is always

made immediately after a time Interval of length 1. Therefore, we allow

a failure exit with probability <C, even though some guard may be satisfied.

To attest to execute an output command P Iu in process P P.

sets P-pj,8 indicating P£ is willing to comunicate with P). Also, to

attempt to execute an input comnd P iz in process P, P sets P f- P

If successful communication is established by Pi and P., the process P

iamediately transmits value u to variable z in PI; and immediately

thereafter Pi sets P. -'P. and P sets PJ-Pi.

An alternative or repetitive statement S may contain the execution

of one of several guarded input cands and output coasnds, say

where s~v. To execute the statement S, P, first executes the

booleans appearing in each guard. Let R be the set of processes appearing

in those guards of S all of whose booleans evaluate to true. Pi must set

P I-OP for each P CI for a time interval of length I (-). At the

first time that an appropriate cimnmication Is established between Pi and

ome willing process P C 1, Pi m=ast imediately set Pt-pA Pj, for all

Pi.tR and then p, must mcute the comiand list associated with the now

satisfied guard In the statement S. Otherwise, if no appropriate comunica-

tL= is established within tive T (t), PI sst then exit the statement S

with failure. note that the probability of an incorrect faile eit is <C.

4 3

Figure 1A. The connections graph H in the case of a ring network
of five processes.

52

Figure 1B. The willingness digraph G

V 2

5

4 3-'V-----

Figure IC. The open-channel graph mt

L -- wit

r3

II

t. t t. t
j j3

process

I *process i
t0 t .=t m t __ t -ti2=tm

Session S time

Figure 2. A session S of i,j and one of the possible crderinzs
of events.

• indicates the start of a phase

i is a phase of j
it.. is a phase of j

1

Fiur 3A Haeo hs velnweepae o
cotansa las al o hephs L of .

1 j

t~.

__

j

I 4 1

i

Figure 3B. Phase L~. of j contains at least half of phase
J

~. of z.
1

k

IIATE

'ILME

